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ABSTRACT
Aquaculture’s specific challenges today reveal needs and problems
directly related with the quality of data collected by the profes-
sional in this industry. As the feeding of the fish is a large part of
the cost in the production, that must be addressed appropriately
and in sync with the most recent optimization methods. With this
paper we show the impact of data analytics in the improvement of
the production techniques in aquaculture. In that, we consider the
state of the art methods of statistics and data mining that permit a
deeper insight into the aquaculture reality through the collected
datasets, either from daily data or from sampling to sampling data.
This must be tuned to the expert knowledge of the fish farmers,
their procedures and technology in use today. In this paper we
also review the state of the art of data analytics methodology in
aquaculture, the data available deriving from the procedures char-
acteristic to this business, and propose mathematical models that
permit a deeper insight on the data. Moreover, we address the data
unknowns and strategies developed that will contribute to the suc-
cess of the business, leading to discover valuable information from
the data that can be made usable, relevant and actionable.
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1 INTRODUCTION
Modern research and commercial aquaculture operations have be-
gun to adopt new technologies, including computer control systems.
Aquafarmers realize that by controlling the environmental condi-
tions and system inputs (e.g. water, oxygen, temperature, feed rate
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and stocking density), physiological rates of cultured species and
final process outputs (e.g. ammonia, pH and growth) can be regu-
lated [3]. These are exactly the kinds of practical measurements that
will allow commercial aquaculture facilities to optimize their effi-
ciency by reducing labor and utility costs. Anticipated benefits for
aquaculture process control and artificial intelligence systems are:
increased process efficiency; reduced energy and water losses; re-
duced labor costs; reduced stress and disease; improved accounting;
improved understanding of the process.

The use of data analytics in aquaculture is itself not new but it
has not been explored in its full potential. Growth and reproductive
modeling of wild and captive species is essential to understand
how much of food resources an organism needs to consume, and
how changes to the resources in an ecosystem alter the population
sizes [3]. Support vector machines are used in environmental mod-
eling in [10] considering the multidimensional nature of the study
cases. The problem of missing sensor readings that are required by
the machine learning based decision-making systems is solved by
an ensemble classifier approach for assessing the quality of sensor
data [1].

The technologies and implementation of the technologies nec-
essary for the development of computer intelligent management
systems come in a wide variety [5] and enhanced commercial aqua-
culture production [4]. Today’s artificial intelligence (AI) systems
offer the aquaculturist a proven methodology for implementing
management systems that are both intuitive and inferential. Thema-
jor factors to consider in the design and purchase of process control
and artificial intelligence software are functionality/intuitiveness,
compatibility, flexibility, upgrade path, hardware requirements and
cost. Of these, intuitiveness and compatibility are the most impor-
tant. The software must be intuitive to the user or they will not
use the system. Regarding compatibility, the manufacturer should
be congruent with open architecture designs so that the chosen
software is interchangeable with other software products.

Figure 1: Dynamical plots developed for the European Com-
mission project aquaSmart, available through a public inter-
face where the fish farmers can upload their data and do a
preliminary analysis and visualization.
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Themodels presented in this paper were developed in the context
of the EU project aquaSmart [2, 9]. This project aimed at enhancing
the innovation capacity within the aquaculture sector, by helping
companies to transform captured data into knowledge and use this
knowledge to dramatically improve performance. In this paper we
discuss data related problems in the industry and describe methods
to approach those problems. We will focus on modeling the Feed
Conversion Ratio (FCR), illustrated in Figure 1, which helps the
aquafarmers evaluate feed performance, considering important
factors such as the water temperature and average fish weight, but
also underlying factors such as the oxygen level.

2 UNIQUE CHALLENGES
It is well known that the production in aquaculture has specific
features and objectives associated with it. When talking about the
adaptation of existing technology, the features important to the
production in aquaculture come from weather prediction. These are
the oxygen levels and water temperature, which are very specific to
this activity. The tasks in fish farming carry several uncertainties –
often expressed by measurements or even evaluations – that permit
further optimization [6]. A classic example is the aim for a better
control on the food loss and food quality. A contribution of data
mining in this context would be of interest to the aquafarming
industry, saving or relocating resources.

An important variable that remains undetermined during the
complete production pipeline is the exact number of fish. A margin
of up to 10% of number of fries is added to the initial production at
time t=0 due to uncertainty of number of deaths in the transport.
That means that we already have a maximum of 10% more fish
than our estimations (assuming that no fries die during transport
or adaptation at t = 0). Other than that we can only have less fish
than we estimated due to the lost fish because of unknown reasons.
This is already an open problem at the level of the bounds for total
amount of harvested fish and the description of best-case scenario
and worst-case scenario. This represents a big lack of knowledge
about production. In fact, the unknown number of fish until the
end of the production is important for the amount of food given
and, consequently, for the resources spent.

Feed composition has also a large impact on the growth of ani-
mals, particularly marine fish. Quantitative dynamic models exist
to predict the growth and body composition of marine fish for a
given feed composition over a timespan of several months [13].
The model takes into consideration the effects of environmental
factors, particularly temperature, on growth, and it incorporates
detailed kinetics describing the main metabolic processes (protein,
lipid, and central metabolism) known to play major roles in growth
and body composition. That showed that multiscale models in biol-
ogy can yield reasonable and useful results. The model predictions
are reliable over several timescales and in the presence of strong
temperature fluctuations, which are crucial factors for modeling
marine organism growth.

3 UNKNOWNS IN THE DATA
It is curious that the underlying problems with the data unknowns
in aquaculture represent a problem of large dimensions for the
industry of aquaculture, in which the production is straightforward.

In fact, it is not known at any time in production, the exact number
of fish in production, and therefore it is not possible to calculate
with exactness the amount of food needed to support an appropriate
growth. Furthermore, there are many conditionings in the progress
of the production that must be taken into account and are hard to
measure with the existing and available technology. In that, it is
important to describe some of the features of the data including an
assessment on its quality and measures to overcome obstacles to
the analysis.

The input and output variables of the dataset are classified as
numerical and categorical. Numerical variables can be: continuous
measured quantities expressed as a float (e.g. ‘av. weight’); discrete
quantities expressed as an integer (e.g. ‘number of fish’). Categori-
cal variables can be: regular categorical data including non-ordered
classes (e.g. species Bream/Bass); or ordinal classes that can be or-
dered in levels (e.g. estimations poor/fair/good). From the variables
that can be measured it is important to distinguish between: (i)
variables that do not change over time, often identifying popula-
tion attributes (e.g. identifications such as ‘year’ or ‘hatchery’); (ii)
variables that can change over time but do not change within a
sampling period (e.g. ‘batch’); (iii) variables that change daily, taken
into account when samplings occur (e.g. ‘average weight’).

Essentially we have four types of input data according to the
impact they assure: (1) identification data that permits the fish
farmer to manage the production and correctly identify the fish;
(2) Daily data that is provided by the fish farmers resulting from
their everyday data input (e.g. ‘date’, ‘av. wt.’, ‘actual feed’, etc.); (3)
Sampling data, collected at predetermined points of the fish growth
time line, to confirm the model values and make the appropriate
adjustments; (4) Life To Date (LTD) cumulative data that is calcu-
lated from the time when the fish enters the net as a fry to the date
of data collection, and will last until the date of the harvest.

Table 1: Classification of values according to time depen-
dence.

change in time? direct calculated derived
yes water temp. FCR, SFR av.weight

no identification av. weight
at t = 0 hatchery

The identification data in input (1) is rather unspecific, as we
cannot at this date in time identify the fish one by one as it is done
in other animal farming such as cows and pigs. The data in this
input category is distinguished between the group of production
indicating localization – Unit, and the individual production series
of fish – Batch. There is no further distinction in the identification.
Batch has to go with Unit. Aquafarmers may have different batches
in one unit or fish from one batch in many units.

The daily data in input (2) is recorded by the aquafarmers on
a daily basis. These data columns follow the development of the
fish since day one when it enters as a fry. The data inputted mostly
follows one batch of fish from the beginning till the end of the
production. One input data can have several units but, for purposes
of the algorithms used, we consider only the time spent in one unit.
For some of the algorithms used, the data is split this way (some
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data tables don’t have values in the column ‘harvest’) with clear
input/output within one unit.

The sampling data in input (3) serves the aquafarmer to im-
prove/fix his/her initial FCR model with real data. This includes
features that can be learned by a specific set of data. Those features
will later be important for the algorithms. They often correspond
to columns with potential effect on the end result. Also, they can
influence the production (e.g. ‘feeder’). The software will adapt to
data and will try to do the analysis and prediction from the available
data. Note that the input will also include data columns unknown
to the system and optional to the aquafarmer. We cannot predict
the relevance of the data on those columns (neither their nature)
but will consider them in the overall global analytics.

Figure 2: The proposed data cleaning process for aquacul-
ture data, including the update of the metadata in the sys-
tem and user interaction.

The daily data, the sampling data and the LTD data in inputs 2, 3
and 4 fall into three categories: (i) Direct values, that correspond to
the direct observation of the aquafarmers on either variables values
including small errors measured in the field (e.g. sampling measures
such as average weight) or precise values provided by external
sources (e.g. water temperature or oxygen level); (ii) Calculated
values, that are dependent of a number of other observed values
(e.g. LTD values calculated from the daily data); (iii) Derived values
– values deriving from previously available data (e.g. FCR calculated
from the table, given average weight and water temperature).

The original data provided by the aquafarmers has variances/holes
and is not precise because it is not measured automatically but in-
stead entered by human hand (with some exceptions such as ‘tem-
perature’). Sometimes it is not entered for 1 or 2 days due to the bad
weather, which complicates the access to the measurements and
to the units themselves (sometimes this adds up to 4 days without
entries). Sometimes this is due to intentional fasting to readjust
features and in that case the data measurements stay the same as
the ones in the previous fields, just before fasting takes place. The
major discrepancies should be pushed to the user as a compromise.
If the data is missing up to a certain threshold, the data will be sent
back to the user in order to be inputted once again after appropriate

corrections. The options for the missing data problem are to con-
sider it as an error and report it to the user requesting the missing
data, or consider the average from the missing data in the sense of
interpolation on a fixed mesh grid.

4 DATA ANALYTICS IN AQUACULTURE
Mathematical modeling aims to describe the different aspects of
the real world, their interaction, and their dynamics through math-
ematics. It constitutes the third pillar of science and engineering,
achieving the fulfillment of the two more traditional disciplines,
which are theoretical analysis and experimentation [11]. Nowadays,
mathematical modeling has a key role also in aquaculture. In the
following section we will present an overview of that. Growth and
reproductive modeling of wild and captive species is essential to
understand how much of food resources an organism must con-
sume, and how changes to the resources in an ecosystem alter the
population sizes [7].

The FCR is an important performance indicator to estimate the
growth of the fish. It is widely used by the aquaculture fish farmers
in pair with the Specific Feeding Ratio (SFR). Its importance follows
from the fact that 70% of the production costs in aquaculture are
assigned to the food given to the fish during growth. Some of it
will fall through the net and some will be spared. The optimization
of the feeding of the fish can carry great benefits to the economic
development of the fish farms.

Specifically, the FCR permits the aquafarmer to determine how
efficiently a fish is converting feed into new tissue, defined as
growth [12]. Recall that the FCR is a ratio that does not have any
units and is provided by the formula:

FCR =
dry weiдht o f f eed consumed

wet weiдht o f дain

while the feed conversion efficiency (FCE) is expressed as a per-
centage as follows:

FCE =
1

FCR × 100
There seems to be some controversy among aquatic animal nu-

tritionists as to which is the proper parameter to measure, but in
aquaSmart we used FCR (exposing here FCE for completion). More-
over, the FCR and FCE are based on dry weight of feed and fish gain,
as the water in dry pelleted feed is not considered to be significant.
A typical feed pellet contains about 10% moisture that will only
slightly improve the FCR and FCE.

The FCR table allows the fish farmer to assess the amount of
food to give to the fish according to their average weight and
the temperature of the water. Each farm has its own FCR table.
This is an opportunity to create our own table/model by tweaking
the numbers accordingly. Also specifying the influence of sexual
maturity and the lack of oxygen, which are done by hand/intuition,
have features to take in consideration by the math model. The FCR
models in this paper consider only temperature and average weight.
The plots in Figures 3, 4 and 5 have temperature as x axis (in °C),
average weight as y axis (in grams), and FCR as the z axis.

Each aquaculture entity draws an appropriate FCR table to that
batch of fish. Higher temperature leads to lower energy spent and
faster growth, and consequently to a lower FCR. As the fish gets
bigger, he needs more food to increase his biomass in percentage,
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and thus the FCR grows higher with the increase of the average
weight. The quality of the food and the size of the pellet size are
not considered at this point. At high temperatures (above 30°C in
the case of bream and bass) low oxygen leads to low conversion to
biomass. This is one of the hidden variables in the model, which
should be considered separately at a later stage. One of the possibil-
ities would be to penalize the FCR tables for the lack of oxygen. The
other variable is the high reproduction of the fish in low tempera-
tures and high average weight, which highly affects the growth of
the fish.

Figure 3: Company A: Real data (on the left) and FCRmodel
(on the right) for the bream production.

Figure 4: Company B: Real data (on the left) and FCRmodel
(on the right) for the bream production.

Figure 5: Company C: Real data (on the left) and FCRmodel
(on the right) for the bream production.

Recall that the Economic FCR is the real FCR index following
from the quotient between food given to the fish and the fish
biomass. When the temperature is too high or too low we should
ignore the data that is filled in with zeros and considered empirical
data. In Figures 3, 4 and 5 we present the plots of the models for
the three fish farms in aquaSmart. It includes 3 fish farms.

The model (on the right) produced based on the sample data (on
the left) serves as a base of comparison with the historical data
provided by a particular fish farm. Thus, with the new real data
getting in our system, the fish farmer can compare it with the model
and make an evaluation on the progress of the production. These
models complement and confirm the expert knowledge: the high
values on the right correspond to high fish reproduction in cold
water temperatures and high average weight values. On the other
hand, high temperatures represent low levels of oxygen which
request higher feeding rate to maintain and increase the growth
rate.

The big number of peaks in the real data, plotted on the left,
correspond to the real values. Typically the input data can be seen
within a grid. The following images show the grid view of both
the real data (on the left) and the FCR model (on the right) for the
company C.

Figure 6: The grid view of both the real data (on the left) and
the FCR model (on the right) for the company C. The axis
are temperature (x) and average weight (y).

We then use least squares method to interpolate the missing
values including all non-peak values as those interpolated values. It
does so by approximate the solution of overdetermined systems. The
average weight must be represented using specific values that are
important in the fish production decision making, and eventually
distinct from fish farm to fish farm. Thus we consider a second
interpolation to produce a final FCR table that is consistent with the
systems in use by the fish farms. The nearest neighbors algorithm
is used here to find the values outside the area [8]. That permits
us to consider the complete table of measurements in line with the
sample data available and the missing values calculated for the area
inside the region.

5 CONCLUSIONS
The challenges of aquaculture for data analytics are very specific in
the field and must be addressed with the appropriate methodology
and technology, in tune with the expertise of the fish farmers. The
uncertainty of measures, such as the number of fish until the time of
harvest, derives in variances that do not permit a complete accuracy
of some of the calculations. This is particularly important to some
of the available tools to monitor the business, such as the feed
conversion rate tables in use by the fish farmers to optimize the
production costs.

The data analytic methods developed in the aquaSmart project
and discussed in this paper aim to contribute to the improvement
of the aquaculture procedures, providing a deeper insight on the
information retained in the collected data, using state-of-the-art
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methods of data mining in line with the expert knowledge of the
field transferred to the meta data in the data store.

Moreover, the statistical analysis of the results permit a clearer
visualization of the important features in the data that can boost
the production and optimize the processes related to it. That will
enable classification and forecast based on the analytics of the avail-
able data. In that, future work includes the exploration of further
advanced learning methods with the goal to discover the unseen fac-
tors influencing the production in aquaculture and complementing
the experience of the end-users.
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